北京市海淀区2015年初二数学《勾股定理》暑假作业含答案
一、选择题
1. 直角三角形一直角边长为12,另两条边长均为自然数,则其周长为( ).
(A)30 (B)28 (C)56 (D)不能确定
2. 直角三角形的斜边比一直角边长2 cm,另一直角边长为6 cm,则它的斜边长
(A)4 cm (B)8 cm (C)10 cm (D)12 cm
3. 已知一个Rt△的两边长分别为3和4,则第三边长的平方是( )
(A)25 (B)14 (C)7 (D)7或25
4. 等腰三角形的腰长为10,底长为12,则其底边上的高为( )
(A)13 (B)8 (C)25 (D)64
三、解答题
19. 11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:
“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?
20. 如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.
21. 如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万,请你在河流CD上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少?
四、综合探索
24. 如图,某沿海开放城市A接到台风警报,在该市正南方向100km的B处有一台风中心,沿BC方向以20km/h的速度向D移动,已知城市A到BC的距离AD=60km,那么台风中心经过多长时间从B点移到D点?如果在距台风中心30km的圆形区域内都将有受到台风的破坏的危险,正在D点休闲的游人在接到台风警报后的几小时内撤离才可脱离危险?